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A RENEWAL DECISION PROBLE~1

by

C. Derman, C. 3. Lieberman and S. Ross

0. Statement of Problem

A system must operate for t units of time. A certain component is

essential for its operation and must be replaced, when it fails , with a new

component. The class of spare components is grouped into n categories with

components of the ith category costing a positive amount C1 
and functioning

for an exponential length of time with rate The main problem of interest

is, for a given t , to .~ssign the initial component and subseqt.i t replacements

from among the ii categories of spare components so as to minimize the expected

cost of providing an operative component for t units of time .

En Section 1 we show that when there are an infinite number of spares

of each category, the optimal policy has a simple structure. Namely, the time

axis can be divided up into n intervals, some of which may be vacuous, such

that when a replacement decision has to be made it is optimal to select a spare

from the category having the ith largest value of AC whenever the remaining

time falls into the ith closest interval to the origin. In Section 2 we con-

sider the situation where n = 2 and there is only a single spare of one

category and an infinite number of the other. In Section 3 we consider the

4 case where there is only a finite number of spares for certain of the categories

under the assumption that a rebate is allowed for the component in use at the

t ’~. end of the problem. In Section 4 we allude to a generalization of the model in

Section 1 allowing for discounting or for the possibility that the system may

randomly terminate before the t units of time expire. An optimal policy has

the same simple structure as in Section 1. 
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1. InfinIte Surplus in All Categories

In this section we suppose that our surplus of spare parts contains an in-

finite number of each category , and we number them so that A
1 
C
1 

> A 2 C2 > ... >

A C . In addition , we suppose that there is no i and j such that C~ -~~ C1

and A~ > A
1
; for if such Is the case it can be shown (see Proposition 2) that

category j need never be used.

Letting V(t) denote the infj.mal expected additional cost incurred when

there are t time units to go and a failure has just occurred , then V(t) satisfies

the optimality equation

t — A x
V(t)  = mm {c~ + f V (t—x) A~e 

~ dx] , t > 0 (1)
i 1,. . . ,n 0

and V ( O ) = O .

In addition , the policy which chooses, when t time units are remaining, a spare

from a category whose number minimizes the right side of the optiniality equation

is an optimal policy. (This is a standard result in dynamic programming when

all costs are assumed non—negative (see [ 3 ] ,  [ 4 1) .

Proposition 1:

• V(t) is an increasing, continuous function of t for t > 0
,;  •1

Proof: The increasing part follows from the definition of V(t) since all

costs are assumed non—negative. To prove continuity suppose that it is optimal
.4

to select a spare from category i whenever there are t units of time remaining.

Then by selecting this same category at time t + c we see, from the lack of

memory of the exponential, and the monotonicity of V that

— A c  — A cV( t )  < V(t + c) < e ~ V(t) + (1 — e ~ 
) (C , + V ( t  + c)) .

L

Hence, the result is given. Q.E.D.
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Theorem 1:

V(t) is a piecewise linear concave function of t having at most n pieces.

Proof: Consider any value t > 0 . Suppose the assignment of category I

when t units of time remain is uniquely optimal. Then by the continuity of

V and the optimality equation (1.) there is an interval (t, t + c), c > 0,

such that I is uniquely optimal at every point in (t , t + c) . Suppose

• several categories are optimal at t . Then the expressions within the brackets

of (1) corresponding to each of the optimal categories are all equal to V(t)

If I is optimal the derivative of the expression with respect to t corres-

ponding to category 1 Is

d —A
1x t — x (t—y)

+ f V(t — x) A1 e dx] — -~ (f V(y) X
~ 
e dy}

t —A~(t—y)
— V(t) — A

~ 
f V(y) A1 e dy
0
t — A x

— A
1 
V(t) — A

1 / V(t — x) a dx (2)
0

— A
1 
V(t) — x i(V(t) — C1)

1-

the derivative existing since V(t) is continuous. It follows that among those

categories that are optimal at t that category j with the smallest A Cj  j

will be uniquely optimal over some interval (t , t + c’), e’ > 0 . Since at

each change (as t increases) of optimal category a category with a smaller AC

becomes optimal, there can be at most n values of t where a change in optimal

category takes place. Since dV(t) is constant within the intervals where one

category is optimal, V(t) is linear within the interval; it is concave because

- 
~~~~ the derivatives are non—increasing. Q.E.D.
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Remark: Having established that an optimal policy employs the same category over

intervals the linearity and concavity of V(t) can be deduced, as well, from

the memoryless property of the exponential distribution and the linearity of

the renewal function of the Poisson process.

It follows from the proof of Theorem 1 that the optimal policy uses

category 1 spares when the time remaining is small, then switches to category

2 spares as the time increases, then category 3 spares as the time further in-

creases, etc. where, of course, the interval of use for some categories may be

empty. This suggests two possible algorithms for finding switching points.

AlgorIthm 1:

For this algorithm let V~ denote the minimal expected cost function

and let denote the optimal policy, when only categories 1, 2, . . . ,  i are

available. For instance

V1(t) 
— C1(l + A

1
t), 0 < t <

and is the policy which always replaces with a spare from category 1.

Prom our previous structural results it follows that will use category

i whenever the time remaining is at least some finite critical value t 1_1

Now at t~~_ 1, it follows, by continuity, that it is optimal either to use

category i and then proceed optimally, or to just use . Hence, if

4 t~~_ 1 > 0, then
_A
~x

— C~ + f V1_1(t1_1 — x) A 1 e dx . (3)

Furthermore, since it follows from the optimaiity equation that for small

values of t, iT
1 

chooses the category with minimal value of Ck, we obtain
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that t .. — 0 If and only if C — mm c, . Hence , unless this is the
i L  l-ck<i ~

case, t~_~ can be taken to be the smallest positive solution of (3).

And, in addition, we have

v1_1(t) t <

V (t) —

V1_1(t1_1) + A~ Ci(t 
— t1_1) t ti__ i

and uses category i whenever t > t1_1 and follows lT
i_i 

when

t
~~~

ti_l .

For example when C1 
< C2, A1 C1 

> A2 C2, this algorithm yields

that t
1 

is chosen so that

C
1
(l + A

1
t
1
) — C

2 
+ C

1 
1 [1 + A1(t1 

— x)] A
2 
e 2 dx

Simplifying,

i Icix i — 
cix2l

t
1 

— i— log — c2x 2j

The expression for V2
(t) can be written as

V2
(t) — C1(i + A1t) 

t <

— C
1 
+ (A1C1 

— A
2
C2) t1 

+ A2 C2 t t > t
1 

.

..1 
__________
Algorithm 2:

:~~ .~ Let C
1 

— min{C1, ... , C~} . For some value t
1 

> 0, category

is used whenever 0 < t < t
1 
. To find t1, for every value of

F I, i > i1, determine x1, the smailest value of x, x ‘ 0 satisfying

— . — — S. S 
— . - — S. —— - -~~~ 

-
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x —A l t x — A t
Ci + 

f V(x — t) e 1 dt C
1 

+ f V(x — t) A
1 

e dt
1 0  1 0

where

v(t ) = C~ (A~ t + 1) = u1(t ) ( say) f or t > 0
1 1

Let t
1 mm {x~} = x~ . For some value t

2 
category i2 is used whenever

t1 
< t < t

2 
. To find t2, for every value of ~ ~ > ~2 

determine x~,

the smallest value of x, x > t
1 

satisfying

x —A j t  x — A t
C~ + f V(x — t) A

1~ 
a 2 dt = C~ + f V (x — t) A i e dt

2 0  2 0

where

v(t ) u1
(t) for 0 < t <

= u1(t1) + A i Ci (t — t
1) 

= u2 (t) (say) for t > t
1

Let t — mm ~x1
} = x~ . For some value of t

3 
category i3 is used

whenev:r ~
:>:2

~ < . R:cursively, category ~~ is used whenever

tk l  < t < tk 
for some value tk 

. To find tk, for every value of

1, i > i~ , determine ~~ the smallest value of x, x > tk_l satisfying

x —A j t x — A t
+ f V(x t) A1 e k dt = C~ + f V(x — t )  A

i 
e dt

k 0 k 0

L
,i.. 

4 
where

v(t) — u (t), t 
— 

< t < t , j  =

4:. — 
~~_l

(tk_1) + A~~~ c1 (t - tk_l) - uk (t ) ,  t > tk_l

- 6 -
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Let t — mm {x1
) — x1 

. This process stops when tk 
. Of course

k k+l

~~~ 1
k 

— fl~ then t
k 

= 
~~

Both algorithms automatically exclude those categories which should

never be used. However, it is possible to eliminate some in advance. This 
-

is indicated in the following.

Proposition 2.

If C~ > C1, A~ A~ (C~ > C1, A~ > A
1
), then category j is never

used in an optimal policy.

Proof: Let t > 0 be arbitrary. Let it
1 

be the policy that uses category

j at t and subsequently assigns categories optimally. Let it
2 

be the

policy that uses category i and subsequently assigns categories optimally.

On comparing it
1 

and it
2 

we have

t —A .x t — A x
V1~ (t) 

— V, (t) 
= (C4 C1) + (J V(t—x) A . e ~ dx — f V(t—x) A1 e dx)

1 2 -‘ 0 0

The first expression on the right is non—negative (positive) by assumption.

The second expression is positive (non—negative) since f f(x) A e~~~ dx
0

is increasing in A for every non—constant non—increasing function f ; V(t — x)

-: is such a function in x, as seen by letting V(t — x) ~ 0 for x > t .

Thus V (t) — V (t) > 0 . Since the use of category j can always be im—
p • ii it1 2

proved upon by using category i its use can never be optimal. Q.E.D.

‘I
,

:

t Remark: It Is also intuitive tha t if , for some 1 and j ,  X~ C1 
< A~ C~

and C1 
< C~ , then category j will never be used. However, while this is

~~.- evident from the formula for t1 in the case of n — 2, and implies it is

true for n — 3, we have not been able to prove It in general.

• — — - ~~~~~~~~~~~~~~ — -. S. 
- 

~~~~~~~~~~ ,
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2. Finite St~pply Model

In this section we suppose that n 2 and that there is an in-

finite supply of spares of one category and only one of the other category .

Theorem 2:

If the set of spare components consists of one component of

category 1 and an infinite number of category 2 , where C 2 > C1, then

the optima l policy is to use a category 2 component when the time re-

maining t is greater than t and use the category 1 component when

t < t, where

— 
log(C IC )

2 1 if A > A1 2

=
~~~~ if

Proof: Since once the decision to use the category 1 item is made there

are no further decisions , it follows that one may regard this as a

stopping rule problem where stopping means the use of the category 1 item .

The one—stage look ahead stopping policy stops at t whenever stopping

at t is better than continuing at t and then stopping at the next op-

portunity . Now letting X denote the lifetime of the category 1 componen t

and V that of the first category 2 component used then W1 the expected

cost of using 1 at t, is

C1
P { X  > ti + (C

1 + C2 ) P{X < t, X + V > t} ÷ E(cost~X + V < t] P{X + V < t)

while W2 the expected cost of f i rs t  using a category 2 at t and then using

j . the category 1 component , is given by

— C2P CV > t )  + (C1 + C 2 ) P{V < t, x + V > t} + EtcostiX + V < t] P {x + V < t)

- 8 -
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• 
- Hence

— — C
1
P{x > ti + (C1 + C2

) P{x t, X + V > t) — c2P{v > t}

• 

— (C
1 
+ C2) 

P{v < t, x + v > t}

= c1P{v > 
t} — c2P{x > t }

—A 2t —A 1t
= C 1 e — C 2 e

Therefore, the one stage look ahead policy uses the category 1 component

at t whenever

—A 2
t —A 1t

• C
1
e — C

2
e 10

or, equivalently, whenever

log(C2/C1)

A A if A
1 2 

1

or

if

Since these sets of time points at which the one—stage look ahead policy

stops can never be left once entered (without stopping), it follows (see

[ 1] or ( 2 ) )  that it is an optimal policy. Q.E.D.

Remark: The above proof does not need the assumption of exponential die—

tributions for X and V . The same form of policy is optimal If there is

a t such that

c1
P{V > t }— C 2

P{X > t }< O f o r t l t

(> 0) (t > t)

— 9 —
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If the failure rate function of X is always greater than the failure rate

function of V then such a t (possibly ‘°) will exist since then

P(V > t )/P (X > t) is a non—decreasing function of t

Theorem 3:

If the set of spare components is an infinite number of c~itC-

gory 1 and one of category 2 , where C2 > C1, A 2 < A1, then the optimal

policy is to use the category 2 component when the time remaining t is

• 
- greater than x and use a category 1 component when t < x where

• 1 
- C1A 2~

x =~~ log 
~~~ — C A2 11

Note: As we might expect x is the same as in the infinite supply model

• when n = 2 .

Proo f: Using the stated policy the expected cost function is

u(t) = C1(A 1t + 1) if t < x

t —A y
= c 2 -+- f c

1[X1(t — y ) + l J A
2
e 2 dy if t > x .

0

It is somewhat tedious but possible to verify that u(t) satisfies

t —A
1y t —A 2y

u(t) = IXIIU{ C
1 

+ f u(t — y) A 1 e d y, c2 + f c1[A 1(t 
— y] A 2 e dy}

p That is, u (t )  satisfies the optiinality equations for this problem; it

t thus follows from Proposition 1 of [3] tha t this policy is optimal. Q.E.D.

-10-
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3. Finite Supply with Rebate Problem

Suppose in some of the n categories there are only a finite number of

components. We assume that the components are numbered j  = 1, 2 

However, in contrast to the previous problems , the cost of the last component

• used is returned. The problem, again, Is to determine a policy for deciding

which available component to use when a new component is required , so as to

minimize the total expected cost.

If t units of time remain when a particular component from category

is put into use and L Is the length of Its life, then the expected cost

associated with the use of this component is

E(cost of component j t) = CJP{L < t}

= C
1
A
1

= C~ A 1 E [min(L , t ) ]

= C
1
A
1 

E[Length of time this component is used j t ]

Thus , letting tS (J ) denote the category to which component j belongs it

follows that the total expected cost under any policy it is

E
~~

[tota1 cost ] = ~ A
6~~~ C6(~) E [ r . J

where -r~ is the amount of time component j  is used , and where the sum

Is taken over all components.

Consider now a modified problem where the cost associated with compo—

nent ~ is A~~(1) C~ (~ ) t~~ where once again is def ined as the amount

• of time that component j is in use , 3 > 1 . The total expected cost with
4 . —

respect to the modif led problem where policy it is used is precisely the

same as the total expected cost with respect to the original problem. Thus,

the policy that is optimal for the modified problem is optimal for the original

problem. However, it Is clear that the policy tha t used the category

h 1 

.— _ ____I___ ~ 
• - 

~~~~~~~ ___ ~__I __J •I ~~ ~~~~~~~ 
• - •
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associated with the mInimal available Ai 
C
1 

is optimal for the modified

problem. Thus we have proved the following:

• Theorem 4:

The policy that minimizes the total expected cost when a rebate

is given for the last component used is that policy that always selects

among all the available categories that one having the smallest

A i Ci .

Remark 1: The same problem can be thought of in a different context except

that it leads to a maximization problem instead of a minimization one.

There are n jobs to be performed sequentially within a fixed time t —

• the ith job takes an exponential amount of time with mean l/Ai and if

completed within the time span of the problem earns the decision maker an

amount C~ . Whenever a job is completed the decision maker must decide

which job to attempt. He wishes to maximize the total expected earnings.

The modified problem has the decision maker earn A
1 
C~ 

~~ 
if units

of time are spent on the ith job whether or not it is completed within

- : the time span of the problem . The decision maker wishes to maximize total

expected earnings. As before, the optimal policy f or the two problems
p

is identical, namely, always choose the job with maximum A
i 
C
1

— 12 —
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• Remark 2: The conclusions for the problem in this section obviously hold

if each category contains an infinite number of components. Since the op-

timal expected total cost must be less than the optimal expected cost for

the problem discussed in Section 1 and since always using category n in

that problem is not necessarily optimal we have the inequalities

A C  t < V ( t ) < A  C t + Cn f l  -- — n f l  n

Actually, better bounds can be obtained. If the rebate given for the

last component used is C
3 

— C
1 

when the last component used is from

category 3, it is still optimal to use category n for each replace-

ment. One then arrives at

A C t + C  < V(t).
n n  1—

Remark 3: Since the optimal policy is independent of the remaining time

it follows that this policy is optimal when the time horizon is a random

variable having any arbitrary distribution.

t ,,-
.

14
- 1 3 -
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4. Discounted Case (A Random Termination Model)

• Suppose in Section 1 dIscounting is appropriate, i.e., for some

a > 0

V(t) = min(C
1 
+ f e~~~ V(t — x) A

1 e
_A
i
x 
dxj

This can be interpreted in the usual economic sense or as a random termina-

tion model. The latter interpretation arises when the system, in addition

• to being terminated definitely t units in the future, may also be termi—

nated due to a randomly occurring accident; the time until such an accident

occurs has an exponential distribution with mean 1/a

L The methodology of Section 1 applies in this case. Proposition 1

holds for V(t) . The derivative corresponding to (2) becomes

(A
1 
+ a) C~ — ciV(t) . With Ai C1 replaced by (A

1 
+ a) C~ the same

type of statement concerning the structure of an optimal policy holds.

The segments will no longer be piecewise linear; however, V(t) will still

-‘ be concave (the segments being the appropriate solution to the linear

differential equation V’(t) (A + a) C — aV(t ))

__ j
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A RENEWAL DECISION PROBLEM

by

C. Dernan, C. i. Lieberinan and S. Ross

Statement of Problem
N.
‘9 

.. system omet- operates for t units of time. A certain component is

essential for its operation and must be replaced, when it fails, with a new

component. The class of spare components is grouped into a categories with

components of the ith category costing a positive amount C1. and functioning

for an exponential length of time with rate A 1. The main problem of interes t

is, for a given t, to assign the initial component and subsequent replacements

f rem among the a categories of spare components so as to minimize the expected

cost of providing an operative component for t units of time.

• In Section 1 we show that when there are an infinite number of spares

of each category, the optimal policy has a simple structure. Namely~ the time

axis can be divided up into n intervals, some of which may be vacuous, such

that when a replacement decision haø to be made it is optimal to select a spare

from the category having the ith largest value of AC whenever the remaining

time falls into the ith closest interval to the origin. In Section 2 we con-

sider the situation where a — 2 and there is only a single spare of one

category and an infinite number of the other. In Section 3 we consider the

• ., case where there is only a finite n~~ber of spares for certain of the categories

under the assumption that a rebate is allowed for the component in use at the

end of the problem. In Section 4 we allude to a generalization of the model in

Section 1 allowing for discounting or for the possibility that the system may

randomly terminate before the t units of time expire. An optimal policy has

• the same simple structure as in Section 1.
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